MACROLIDE ANTIBIOTIC STUDIES. XIII^{*} PARTIAL ABSOLUTE CONFIGURATIONS OF METHYMYCIN, NEOMETHYMYCIN, NARBOMYCIN AND PICROMYCIN

Research School of Chemistry, Australian National University, R.W. Rickards and R.M. Smith Canberra, A.C.T.

(Received in UK 6 February 1970; accepted for publication 12 February 1970)

Oxidative degradation of the macrolide antibiotics $^{\rm l}$ methymycin $^{\rm 2}$, neomethymycin $^{\rm 3}$, $^{\rm}$ narbomycin⁴, and picromycin⁵, all of which contain the structural segment (I), yields the (+)-lactonic acid (II)^{2,6}. This key degradation product was assigned the absolute configuration 4S, 6R by Djerassi and co-workers⁷ and 2S, 3R by Bergel'son and Batrakov⁸, and corresponding stereochemical assignments were then made in the parent macrolides^{7,8}. We show here that the 2S, 3R assignments 8 in the acid (II), and the resulting assignments 8 in the antibiotics themselves, should be reversed.

The pmr spectrum (in CDC1₃) of the natural lactonic acid (II) showed H_3 as a double doublet (J 2.3, 10.0 Hz) centred at τ 5.45, and a double quartet (J_d 2.3, J_q 7.5 Hz) at τ 7.27, which was confirmed as H_2 by irradiation at τ 5.45 when it collapsed to a quartet (J 7.5 Hz).

* Part XII, D.G. Manwaring, R.W. Rickards and B.T. Golding, submitted for publication.

Irradiation of H₂ collapsed the H₃ signal to a doublet (J 10.0 Hz) and a CHCH₃ doublet at τ 8.78 (J 7.5 Hz) to a singlet. Thus $J_{3,4}$ must be 10.0 Hz, whilst $J_{2,3}$ must be 2.3 Hz. Similar pmdr results were obtained for the lactonic acid methyl ester, in which H_z resonated as a double doublet at τ 5.50 with J_{τ_4} 10.0 Hz and J_{τ_5} 2.3 Hz, and H₂ as a double quartet, τ 7.30 (J_A 2.3, $\rm J_q$ 7.0 Hz). The magnitude of $\rm J_{3,\,4}$ in these compounds necessitates that these vicinal $\rm J$ protons are anti-periplanar 10 , and in conjunction with the previous 4S assignment 7 leads to the S configuration for C-3. The most likely conformation for the lactones is the half-chair form¹¹ (III; $R = H$ or Me), although a half-boat form¹¹ is not excluded on pmr grounds.

 \mathbb{I} is a set of the set of th

In order to relate the stereochemistry of $C-2$ to $C-3$ in the acid (III; $R = H$), the ester (III; $R = Me$) was reduced with lithium aluminium hydride to the triol⁸, which with acetone and p-toluenesulphonic acid gave an hydroxyketal⁸. The 1,3-dioxan structure (IV; R = H) of this ketal follows from major mass spectroscopic fragmentations of the acetyl derivative (IV; R = MeCO) to give <u>m/e</u> 257 and 129, representing (M - Me)' and (M - CHMeCH₂CHMeCH₂OCOMe)' ions.

Pmr spectra of the acetylated 1,3-dioxan (IV; $R = MeCO$) showed resolved absorption due to five protons between τ 5.7 - 6.8, which could be interpreted with the aid of double irradiation and solvent shifts. The 4'-methylene protons appeared (in $C_{6}D_{6}$) at lowest field as the AB portion of an ABX system, double doublets too close in chemical shift for first order analysis. Three further double doublets centred at τ 6.25 (J 11.5, 2.5 Hz), 6.60 (J 11.5, 1.5 Hz) and *
6.81 (J 8.9, 2.3 Hz) represent respectively the two mutually-coupled C-6 methylene protons * and the C-4 methine proton of the 1,3-dioxan ring. Irradiation at the H_c frequency (τ 8.82) causes collapse of all three resonances to simple doublets with loss of the smaller coupling in each case. It follows from the Karplus dihedral angle relationship⁹, coupled with the fact

^{*} These protons form the AB portion of an ABX system, the first order analysis of which was validated by an ABX computation of line positions and intensiti

that the system C-4,5,6 is part of a 6-membered ring, that H_c is syn-clinal¹⁰ to both H_c proton and also to H_4 . Two partial approximate conformations (V) and (VI) of the dioxan ring result. (VI) with the C-2 gem-dimethyl group added would involve severe axial-type interactions^{12,13} and is not a possible preferred conformation. (V) remains, from which it follows that H_A and H_5 are cis-related, and that the absolute configuration of C-5 is S.

These conclusions are valid regardless of the relative position of C-2, i.e., regardless of the overall conformation of the 1,3-dioxan ring. However, of the various conformations possible, the chair form **(IV)** is likely to be preferred, since boat and skew-boat forms will be destabilised by 2,5- and 2,4-alky1-alky1 interactions^{12,13}. This chair conformation (IV) and the embodied relative configurational assignments at C-4 and C-S are confirmed by published chemical shift¹⁴ and coupling constant^{12,14} data, which also permit assignment of the τ 6.25 and 6.60 resonances to the equatorial and axial protons respectively at C-6. Thus in a series or substituted 1,3-dioxans, H_{4} and H_{6} resonated in the range τ 5.86 - 6.24, H_{4ax} and H_{6ax} at higher field between τ 6.44 - 6.96, whilst $H_{\tt 5eq}$ resonated at τ 8.80 - 8.81 with $H_{\tt 5ax}$ to lower field τ 7.97 – 8.09. $J_{\rm 4ax,Seq(6ax,Seq)}$ ranged between 2.5 – 4.4 Hz, $J_{\rm 4eq,Seq(6eq,Seq)}$ 1.2 – 1.9 Hz, $J_{4eq,5ax(6eq,5ax)}$ 3.3 - 6.6 Hz, $J_{4ax,5ax(6ax,5ax)}$ 9.0 - 13 Hz, and $J_{6eq,6ax}$ 10.1 - 11.3 Hz.

The complete absolute stereochemistry of the natural Iactonic acid (II) can now be designated as 2R, 3S, 4S⁷, 6R⁷, thus reversing Bergel'son and Batrakov's assignments^{*8} at C-2 and C-3. Extension of these assignments to the parent antibiotics defines the partial absolute configuration of methymycin 2 and neomethymycin 3 as 2R, 3S, 4S 7 , 6R 7 , and of narbomycin 4 and picromycin⁵ as 4R, 5S, $6S^{7,5}$, $8R^{7,5}$. Allowing for the revision⁵ of picromycin's structure, these conclusions are in complete agreement with the predictions of Celmer's

 $\hspace{0.1mm}^*$ These authors have apparently proven the relative stereochemistry of a racemic diastere isomer of the natural acid (II). Their error probably stems from an incorrect identificat reportedly²¹ based only on infrared spectra, of this diastereoisomer as the racemate of the natural acid.

configurational model¹⁶ for macrolide antibiotics.

Acknowledgements: We thank Mr C. Arandjelovic for pmr spectra, and Dr R. Bramley for helpful discussion.

REFERENCES

- 1. R.B. Woodward, Festschrift Arthur Stoll, p.524, Birkhauser, Basel (1957), and Angew. Chem. 69, 50 (1957); M. Berry, Q. Rev. chem. Soc. 17, 343 (1963).
- 2. C. Dje**ra**ssi and J.A. Zderic, <u>J. Am. chem. Soc. 78</u>, 2907, 6390 (1956); and references therein.
- 3. C. Djerassi and O. Halpern, <u>J. Am. chem. Soc. 79</u>, 2022 (1957), and <u>Tetrahedron 3</u>, 255 (1958).
- 4. V. Prelog, A.M. Gold, G. Talbot and A. Zamojski, Helv. chim. Acta 45, 4 (1962); and references therein.
- 5. R.W. Rickards, R.M. Smith and J. Majer, Chem. Comm., 1049 (1968); H. Muxfeldt, S. Shrader, P. Hansen and H. Brockmann, <u>J. Am. chem. Soc. 90 </u>, 4748 (1968); and references therein.
- 6. R. Anliker, D. Dvornik, K. Gubler, H. Heusser and V. Prelog, <u>Helv. chim. Acta 39</u>, 1785 (1956).
- 7. C. Djerassi and O. Halpern, J. Am. chem. Soc. 79, 3926 (1957); C. Djerassi, O. Halpern, D.I. Wilkinson and E.J. Eisenbraun, $Terahedron 4$, 369 (1958).</u>
- 8. **L.D.** Bergel'son and S.G. Batrakov, Bull. Acad. Sci. U.S.S.R. Div. them. Sci., 1982 (1966).
- 9. M. Karplus, J. Am. chem. Soc. 85, 2870 (1963); J.W. Emsley, J. Feeney and L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy $\frac{1}{2}$, p.166, and $\frac{2}{2}$, p.678, Pergamon, Oxford (1965); H. Conroy, Advances in Organic Chemistry 2, p.265, ed. **R.A.** Raphael, E.C. Taylor and H. Wynberg, Interscience, New York (1960); and references therein.
- 10. W. Klyne and V. Prelog, <u>Experientia 16</u>, 521 (1960).
- 11. A.F. Beecham, Tetrahedron Lett., 3591 (1968); H. Wolf, Tetrahedron Lett., 5151 (1966); K.K. Cheung, K.H. Overton and G.A. Sim, Chem. Comm., 634 (1965); and references therein.
- 12. J.E. Anderson, F.G. Riddell and M.J.T. Robinson, <u>Tetrahedron Lett</u>., 2017 (1967).
- 13. K. Pihlaja, <u>Acta chem. scand. 22</u>, 716 (1968).
- 14. M. Anteunis, D. Tavernier and F. Borremans, <u>Bull. Soc. chim. Belg</u>. $\frac{75}{25}$, 396 (1966).
- 15. L.D. Bergel'son and S.C. Batrakov, Bull. Acad. Sci. U.S.S.R. Div. them. Sci., 1259 (1963).
- 16. W.D. Celmer, <u>J.Am. chem. Soc</u>. <u>87</u>, 1801 (1965); Antimicrobial Agents and Chemotherapy 1965, p.144, ed. G.L. Hobby, Am. Sot. Microbial., Ann Arbor (1966); Biogenesis of Antibiotic Substances, p.99, ed. Z. Vanek and Z. Hostalek, Czechoslovak Academy of Sciences, Prague (1965); J. Am. chem. Soc. 88, 5028 (1966).